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Towards the conservation laws and Lie symmetries for the 
Khokhlov-Zabolotskaya equation in three dimensions 

A Roy Chowdhury and Minati Nasker 
High Energy Physics Division, Department of Physics, Jadavpur University, 
Calcutta 700 032, India 

Received 25 February 1985 

Abstract. We have obtained the explicit structure for the generating function of Lie 
symmetries for the Khokhlov-Zabolotskaya equation describing the propagation of a sound 
beam in a non-linear medium. In the absence of a canonical framework we have derived 
the set of conservation laws through the technique of differential forms and prolongation. 
Such conservation laws are of utmost importance for the analysis of a sound beam in the 
medium. 

The equation describing the propagation of a sound beam in a non-linear medium is [ 11 

(1) 
in two space and one time dimensions. This, or a similar equation in three space and 
one time dimensions, is known as the Khokhlov-Zabolotskaya equation. We have 
obtained here the Lie point symmetries and the conservation laws associated with 
equation (1). Since it is known that a direct relation between the symmetries and 
conservation laws exists for equations deducible from a variational principle, we have 
followed here an elegant approach of differential forms and closure, due to Walhquist 
and Eastabrook [6] to obtain the structure of conserved quantities. 

Pxr - (PPI- ) x = ~ y y  

Let us consider a set of transformations for equation (1) in the form 

P + P + W ( P ,  4 t ,  Y) = P* 

x + x + &7*(p,  x, t ,  y )  = x* 

t + t + &?.)&I, x, f ,  y )  = t* 

Y + Y + &74(P, x, t ,  Y) = Y* 

pT*,* - (p*p:*) ,*  = p;*),*. 

and demand that equation (1) remains invariant under (2), that is 

By repeated use of the chain rule of differentiation we can obtain the transformation 
rules for px, p,,, pxx, etc, and write them as [2] 

and so on, where only terms of the order of E have been retained, and D” and D’ 
denote respectively the total derivative evaluated according to the following formulae: 

(3) 

p:* + P x  + DX71 p;* + py + 0 ’ 7 2  (4) 
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(5) 

1775 



1776 A Roy Chowdhury and M Naskar 

Similar expressions for higher-order derivatives can be constructed (some of them are 
also given in reference [ 2 ] ) .  Substituting expressions like (4) and ( 5 )  in (3) and equating 
like powers of px, py, p:,, pXy, etc, after taking care of the original equation (1) we 
obtain the following equations for the determination of the transformation functions. 
(Here we have used the notation that P k  = ap /axk ,  Z1 = x, Z2 = f, Z3 = y.) 

a 774 a774 a772 --+ 2p-+ 2- = 0 a2v1 a2v4 
ap2 a z 3 a p  aZ2 az, aZ, 

2-=o -- 

These sets of equations can be solved effectively to yield 

771 = ( a  - b ) p +  cy+ d 

772 = ax - ( cy  + d )  + e 

v3 = b t+  e 

774 = $(a + b ) y  - ct2+ e. 

The Lagrange equations pertaining to (7) can be written as 

dp  dx dy d t  
771 772 774 773 

-----=- - -  

Integrating (8) we obtain the following similarity structure 

x = X t - ~  + i . p  + ; 1 2 t 3 - p  

y =  y t - ( ~ + 1 ) / 2 +  / t ( 3 - ~ ) / 2  

( 7 )  

p ( x ,  y ,  t )  = / y + t P t 2 +  t”-’&(x, Y) ( 9 )  

being an arbitrary function of two variables. When we plug this expression for 
p(X, Y,  f )  in the original equation (1) we obtain the following equation for 41 in two 
dimensions 

(10) 

Since equation (10) is still a partial differential equation it can again admit a further 

4;x + 4 l X  + 4 1 4 l X X  + t ( P +  1)Y4,x,+pX41xx + 4lYY = o  
with p = a/  b, 1 = 2 c / ( 3 b  - a ) .  

set of point transformations 
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along with 

which is nothing but a simple scaling transformation. Integrating the corresponding 
Lagrange equations, we obtain 

4,  = Y2&(Z) = Y ’ & ( X /  Y’) 

6; + ( 1 - 2 2 )  rJz + ( 4 - z + 4Z2) rJzz + 2 &z = 0. 

(13) 

(14 )  

whence equation (10) is reduced to a non-linear ordinary differential equation 

However, it is unfortunate that this equation is not mentioned in the PainlevC 
classification mentioned in Ince [ 4 ] .  So it is not very clear as to how one can obtain 
an explicit solution of (14) and thereby that of the original problem. Of course one 
can make a critical point analysis following Ince or Ablowitz et a1 to ascertain whether 
(14)  is integrable or not, but such an analysis is outside the scope of this paper. So 
we observe that the Lie symmetry generator in the first stage of reduction is of the form 

77 = ( a  - b ) p  + cy+ d + [ax  - (cy + d )  + e ]px  + + ( a  + b ) y  - ct2+ e ] p ,  + (bt  + e)p, .  (15) 

The relevant operators can be put in the form [ 5 ] :  

a a i a  x , = p - + x - + - -  
ap a x  2 ay 

a a y a  
ap a t  2 ay 

x - --+ t - + -  - 
3 -  

a a  
ap ax  

a a a  X5=-+-+-. 
ax  a t  a y  

x ---- 
4 -  

It is not very difficult to see that these operators form a Lie algebra which operates 
on the solution manifold of equation ( 1 ) .  Similar considerations are also valid for the 
generator 5 at the second stage of reduction. 

Since the existence of symmetries indicates that there should exist some non-trivial 
conservation laws, here we try to extract the structure of such conserved quantities 
from a general formalism rather than from the symmetries deduced above. The main 
reason for such a treatment is that for systems not known to possess a Lagrangian or 
Hamiltonian structure it is not possible to make a one-to-one connection between the 
symmetries and conservation laws. It is known that these conservation laws are very 
important for the analysis of the dispersion of the sound beam during the course of 
its propagation. As an alternative route to the conservation laws we here follow an 
effective as well as an elegant method based on the use of differential form, prolongation 
and closure under exterior differentiation [ 6 ] .  This method is perhaps unique in the 
sense that it can be used without any modification in any number of dimension, 
specially in three dimensions, in our case. 
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To write our equation in the language of differential form we put [7] 

P = P x  4 = Py (17) 

Pr -P2- PPX - q y  = 0. (18) 

so that the equation becomes 

Now, it is easy to observe that our original non-linear equation (1) is equivalent to 
the following set of differential forms when sectioned in a proper fashion: 

= p  dx A d t  A dy - d p  A dt  A dy 

a 2  = q dx A dt  A dy - dp A d x  A d t  (19) 

a , = d p  A dy A d x - p 2  dx A d t  A d y - p  dp A dt  A dy-dq  A dx A dt. 

These sets of diff erential forms which are equivalent to the original differential equation 
under proper sectioning can generate the conservation laws associated with the system 
if we follow the reasoning given below. Finding a conservation law is equivalent to 
searching for a 2-form: 

w = F d x  A dt  + G dt  A dy + H dy A dx (20) 

such that the exterior derivatives of w: i.e. 

remains in the ideal generated by the set of closed forms ai ( i  = 1,2,3).  In the 
mathematical language we demand 

dw = c J a , .  

Equation (22) yields some differential equation for F and G which upon solution 
yields a set of charge and current in accordance with (21). An interesting observation 
at this point is that a new and non-trivial set of conservation iaws can be generated if 
the basic set of variables (called independent variables in the language of prolongation 
theory) p and q are extended to include higher-order derivatives such as pxx and pyy, 
etc, and to include in equation (21) all other differential forms which are equivalent 
to the derived consequence of the original equation. In our calculation elaborated 
below we illustrate this in detail. However at this stage an important observation may 
be made. For some combinations of the basis variables spanning the jet space the 
solution structure of F and G may not be completely new but a simple consequence 
of those previously obtained. 

(i) Our equation (1) is itself in the form of a conservation law. To generate a new 
one let us consider equation (1) and the derived equation obtained by differentiating 
with respect to x, which is 

PXXl - 3 P X P X X  - P P X X X  - Pyyx = 0. (22a) 

Let us define the basis variables 

P = P x  4 = P y  s = P x x  z = P x y  = P, 
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and consider the problem of obtaining F and G as functions of (p, q, S, Z, p )  so that 
equation (21) is satisfied. In this case we obtain an equation of the form for the 
determination of F, G and H 

Gs = -pHs HS=-FZ 

and 

ZF, +pG, +p2Hp +3pSHs - S(pH, + G,) = 0 

when the fundamental set of forms is 

C Y ,  = Z  dx A dt  A dy -dp A dx A dt 

a 2 = p  dx A d t  A dy -dp  A dt  A dy 

a3=dp  A dy A dx -p2 dx A d t  A dy - p  dp A dt  A dy -dq A dx A d t  (24) 

a ,=ds  A dy A d x - 3 ~ ~  dx A dt  A dy-p  ds A dt  A d y - d Z  A dx A dt 

 CY^= S dX A d t  A dy-dp A dt  A dy. 

It is then not very difficult to observe that a solution to equation (23) is 

G = -  apS - ap2 H = a S  F = - a Z  (25) 

which is seen to satisfy equation (20) on the solution manifold of equation (1). 
( i i )  Let us now change the basis variables to the following set 

P=P2 9 = P y  z = Pxy s = P x x  = Px Y = Pyy = qy 

and consider equation (1) with the one obtained by taking a derivative of (1) which is 

P x y t  - 2PxPxy - P.YPXX - P P x x y  - Pyyy = 0. (26 )  

The basis 3-forms are 

a , =  Z dx A d t  A dy - dq A d t  A dy 

a 2 =  9 dx A dt  A dy-dp A dx A dt  

a 3 = p  dx A dt  A dy-dp A d t  A dy 

= y dx A d t  A dy - dq A dx A dt  

a , = d Z  A dy A dx -2pZ dx A dt  A dy - qS dx A dt  A dy 

- p d Z  A dt  A dy -dy  A dx A dt  

a,=S dX A dt  A dy-dp A dt  A dy 

which along with (22) yields 

Gz = -pHz = pF, 

GqZ + qF, + pGp + YF, + 2pZHz + SG, + qSHz = 0. 

A non-trivial solution is given by 

F = - Q Y  G = -apZ - apq H = aZ. 



1780 A Roy Chowdhury and M Naskar 

(iii) When the set of basis variables is taken to be Z = pyy. p = px, q = py, S = pxx = px 
in ( 2 2 ) ,  the basis 3-forms are 

a ,  = Z  dx A d t  A dy-dq  A dx A dt  

= p  dX A dt  A dy -dp A d t  A dy 

4 dx A d t  A dy -dp A dx A d t  

C Y ~ = ~ S  A dy A dx-3pS dx  A d t  A dy-p  dSA dt  A d y - d Z  A d t  A dy 

= S dx A d t  A dy-dp A d t  A dy. 

The corresponding solution obtained is 

F = a  H = a S  G = -  aps - az - ap2. (31) 

(iv) Similar calculations can also be done by considering the ‘t’ derivative of 
equation (1): 

Pxtt - 2 P x P x t  - Ptpxx - P P . ~  - ~ y y t  = 0 

and choosing the basic variables as 

z = pxr = s, P = P x  4 = P Y  r = PYY = 9 Y  s= PI 

which yields the corresponding differential 3-forms 

a,  = Z  dx A d t  A dy -ds  A d t  A dy 

a 2 = p  dx A d t  A dy -dp A d t  A dy 

a3= 9 dx A d t  A dy -dp A dx A d t  

 CY^= y dx A d t  A dy-dq A dx A d t  

S dx A d t  A dy -dp  A dy A dx 

a g = d Z  A dy A dx -2pZ  dx A dt  A dy - S dp A dt  A dy 

- p  d Z  A d t  A dy -dy  A dy A dx 

giving the following equations for F, G and H 

H z  = - H y  Gz = PHy Gp = -SHz 

ZGS + pGp + qFp + yFq + SH, + 2pZHz = 0 

whose solution is seen to be 

F = a  G = apZ + apS H = - aZ. 

(v) Lastly we mention the case for the set of variables 

z = p * y  P = P x  4 P Y  Y .= PYY 

Without going into the details which are similar to above we ca 
form of F, G and H :  

F = - a y  - apS -pi  G = a  H = az. 

(33) 

(34) 

s = P x x .  

report the followi g 

(35) 

In our above computations we have reported a detailed investigation about the 
symmetry generators and conservation laws of the Khokhlov-Zabolotskaya equation 
in three dimensions. Since until now only a few equations in three dimensions are 
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known to be admissible in the formalism of a Lax pair, and our present equation does 
not belong to this class, the method adopted seems to be the only logical step in 
providing the integrals of motion. It has already been observed that such integrals are 
useful in determining the extent of broadening of the sound beam in the course of its 
propagation through the non-linear medium. Further analysis of the actual physical 
problem employing these results will be the subject matter of a future publication. 
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